Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Phase equilibria and crystal chemistry of the R-Cu-Ti-O systems (R = lanthanides and Y)

Z. Yang^a, W. Wong-Ng^{d,*}, J.A. Kaduk^b, M. Jang^c, G. Liu^d

^a Yunnan Normal University, Kunming 650092, PR China

^b INEOS Technologies, Naperville, IL 60563, USA

^c Yonsei University, Seoul 120–740, Korea

^d Ceramics Division, National Institute of Standards and Technology, Giathersburg, MD 20899, USA

ARTICLE INFO

Article history: Received 25 June 2008 Received in revised form 4 November 2008 Accepted 11 November 2008 Available online 21 November 2008 Keywords:

R–Cu–Ti–O (R = lanthanides) Coated conductors Phase equilibria Crystal chemistry Reference X-ray powder patterns

ABSTRACT

As part of the study of interaction of the Ba₂*R*Cu₃O_{6+z} (*R* = lanthanides and Y) superconductor with SrTiO₃ buffer, phase equilibria of the subsystem, R_2O_3 -TiO₂-CuO (*R* = Nd, Y, and Yb), have been investigated in air at 960 °C. While the phase relationships of the two phase diagrams with smaller *R* (Y and Yb) are similar, substantial differences were found in the Nd₂O₃-TiO₂-CuO system, partly due to different phase formation in the binary R_2O_3 -TiO₂ and R_2O_3 -CuO systems. R_2 CuTiO₆ and R_2 Cu₉Ti₁₂O₃₆ were the only ternary phases established in all the three diagrams. R_2 Cu₉Ti₁₂O₃₆ belongs to the perovskite-related [AC₃](B₄)O₁₂ family which is cubic *Im*3. Depending on the size of R^{3+} , R_2 CuTiO₆ crystallizes in two crystal systems: *Pnma* (*R* = La-Gd), and *P*₆₃cm (*R* = Dy-Lu). The structure and crystal chemistry of the *Pnma* series of R_2 CuTiO₆ (*R* = La, Nd, Sm, Eu, and Gd) are discussed in detail in this paper. Patterns for selected members of R_2 CuTiO₆ have also been prepared and submitted for inclusion in the Powder Diffraction File (PDF).

Published by Elsevier Inc.

OLID STAT

1. Introduction

With increasing global utilization of electricity in recent years, energy shortages and electricity outages have become common problems. Consequently, there are pressing needs for improvements in electrical distribution grids and for more efficient utilization of energy resources. High temperature superconductors have demonstrated potential for meeting these needs [1]. There is continued effort within the high T_c community on research and development of coated conductors for wire and tape applications [2–7]. These coated conductors are based on Ba₂YCu₃O_x (Y-213) and Ba₂RCu₃O_x (*R*-213, *R* = lanthanides) as the principal superconductors. Y-213 and *R*-213 can be deposited on flexible substrates using various techniques [8–14], and the resulting tapes show excellent current carrying capability.

State-of-the-art substrates and buffer layers form the basis for coated conductor fabrication. Despite many benefits of the use of buffer layers, including the promotion of epitaxial growth of Ba₂YCu₃O_{6+x}, there are unavoidable reactions at the interfaces between the layers [15,16]. Understanding of interfacial reactions of Y-213/*R*-213 phases with the buffer layers will provide information about how to avoid and/or control the formation of

* Corresponding author. Fax: +13019755334.

E-mail address: Winnie.wong-ng@nist.gov (W. Wong-Ng).

secondary phases. Phase equilibrium data will also assist interpretation of the results of transmission electron microscopy (TEM) analysis of coated conductor interfaces.

SrTiO₃ is one of the possible buffer layer materials for the ion beam assisted deposition (IBAD) technique [2,3], which has been largely developed at Los Alamos National Laboratory. SrTiO₃ is also one of the model substrates for studying phase formation mechanism [8,17–20]. As part of our studies of the interaction of Ba₂YCu₃O_{6+z} with SrTiO₃, we report the crystal chemistry and phase equilibria of the R_2O_3 –TiO₂–CuO (R = Nd, Y, and Yb) subsystems as well as the characterization of the ternary series, R_2 CuTiO₆ (R = Nd, Sm, Eu, and Gd). Since reference X-ray powder diffraction patterns are important for phase characterization, we have also prepared selected patterns in the R–Cu–Ti–O systems for inclusion in the Powder Diffraction File (PDF) [21].

2. Experimental¹

Compounds within the *R*–Ti–Cu–O (R = Nd, Y, and Yb) systems were prepared by heating a stoichiometirc mixture of CuO, R_2O_3 , and TiO₂ in air. R_2O_3 were first heat-treated at 850 °C overnight

¹ The purpose of identifying the equipment in this article is to specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology.

Table 1

Compositions (#1–23) prepared for the phase diagram study of the R_2O_3 –TiO₂–CuO (R = Nd, Y, and Yb) systems and three additional compositions (#24–26) prepared for the Nd₂O₃–TiO₂–CuO system.

#	TiO ₂	$1/2R_2O_3$	CuO
1	25	50	25
2 3	52.1	8.7	39.2
3	25	65	10
4	10	70	20
5 6	10	55	35
	10	30	60
7	20	30	50
8	35	45	20
9	30	15	55
10	45	35	20
11	55	35	10
12	35	55	10
13	90	5	5
14	65	15	20
15	67	3	30
16	30	2	68
17	0	66.7	33.3
18	0	50	50
19	33.3	66.7	0
20	50	50	0
21	60	40	0
22	70	0	30
23	40	0	60
24	65	30	5 (R = Nd)
25	75	20	5 (R = Nd)
26	60	40	0 (R = Nd)

The compositions are expressed in mol fraction, %.

prior to use. Samples were weighed out, well-mixed and calcined at 950 °C for 1 day and at 960–970 °C for about 15 days with intermediate grindings. For phase equilibrium studies, a total of 26, 23, and 23 samples were prepared for the R = Nd, Y and Yb systems (Table 1), respectively. In addition to the phase diagram study, we have also investigated the crystal chemistry and crystallography of the R_2 CuTiO₆ series (R = La, Nd, Sm, Eu, and Gd). Solid state sample preparation techniques as described above were applied, with the highest temperature of heat-treatment at 1050–1100 °C for a total of 2 weeks. The purity of the samples was confirmed by powder X-ray diffraction.

During reference pattern determination for R_2 CuTiO₆, the powders were deposited on zero-background cells as acetone slurries. The specimens were rotated during the measurements of the powder patterns. The patterns were measured on a Bruker D8 advanced diffractometer equipped with a VÅNTEC-1 positionsensitive detector. The patterns were measured (CuK α radiation, 40 kV, 40 mA, 0.3° divergence slit) from 5° to 150° 2θ in 19871 steps, counting for 0.5 or 1 s per step. The structure of R_2 CuTiO₆ was determined using the Rietveld refinement technique [22] with the software suite GSAS [23]. Reference patterns were obtained with a Rietveld pattern decomposition technique. In this technique, the reported peak positions are derived from the extracted integrated intensities and positions calculated from the lattice parameters. When peaks are not resolved at the resolution function characteristics of a good laboratory diffractometer, the intensities are summed, and an intensity-weighted *d*-spacing is reported. Therefore, these patterns represent ideal specimen patterns. They are corrected for systematic errors both in d-spacing and intensity.

3. Results and discussion

A phase diagram of the Nd₂O₃-CuO-TiO₂ system is shown in Fig. 1. Figs. 2 and 3 give the phase diagrams for R_2O_3 -CuO-TiO₂

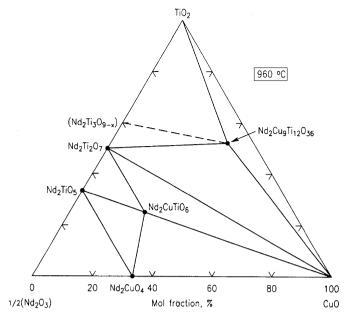


Fig. 1. Phase diagram of the Nd₂O₃-CuO-TiO₂ system prepared in air at 960 °C.

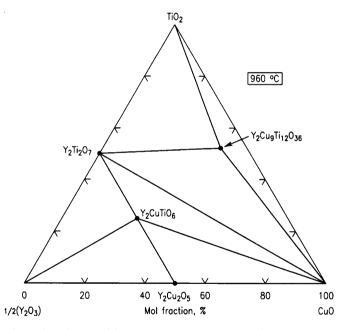


Fig. 2. Phase diagram of the Y₂O₃-CuO-TiO₂ system prepared in air at 960 °C.

systems with R = Y and Yb. These two diagrams are similar to each other. Phase compatibility of these R_2O_3 -CuO-TiO₂ systems, and a comparison with that of the La-analog [24] will be discussed in the following sections. Crystal chemistry and crystallography of R_2 CuTiO₆ and R_2 Cu₉Ti₁₂O₃₆ will also be described. The reported lattice parameters in this paper including those taken from literature were measured at ambient conditions.

3.1. Phase diagrams of the R_2O_3 -CuO-TiO₂ systems (R = Nd, Y, and Yb)

In the R_2O_3 -CuO systems, only one binary oxide phase was confirmed. Depending on the size of *R* the binary phase is

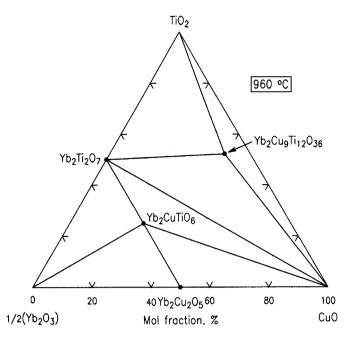


Fig. 3. Phase diagram of the Yb₂O₃-CuO-TiO₂ system prepared in air at 960 °C.

different, namely, R_2 CuO₄ (R =Nd) vs. R_2 Cu₂O₅ (R =Y and Yb). Nd₂CuO₄ crystallizes in the space group of I4/*mmm*, a = 3.937 Å and c = 12.155 Å (PDF 24-777) [21]; Y₂Cu₂O₅ belongs to the orthorhombic system *Pna*2₁, a = 10.8003(8)Å, b = 3.4953(8)Å, and c = 12.4588(8)Å (PDF 1-78-2100). The cell parameters for Yb₂Cu₂O₅ are a = 10.7290(1)Å, b = 3.4355(1)Å, and c = 12.3531(1)Å (PDF 4-006-8559).

Two phases were determined in the TiO₂-Nd₂O₃ system: Nd₂Ti₂O₇ (P2₁, *a* = 13.008(2)Å, *b* = 5.4648(7)Å, *c* = 7.679(2)Å, β = 98.56 (2)° (PDF 33-942)), and Nd₂TiO₅ (*Pnam*, *a* = 10.7251(9)Å, *b* = 11.3407(10)Å, and *c* = 3.8457(4)Å (PDF 33-944)). However, in the TiO₂-Y₂O₃ and TiO₂-Yb₂O₃ systems, only the *R*₂Ti₂O₇ phase (*Fd*-3*m*, *R* = Y, *a* = 10.0950(5)Å (PDF 1-73-1697); *R* = Yb, *a* = 10.030Å (PDF 17-454)) was found.

In agreement with the study by Anderson et al. [24], no compound was found in the TiO_2 -CuO system under the current experimental conditions. The phases that were reported in literature, namely, Cu₃TiO₅ [25], Cu₃TiO₄ [26], and Cu₂Ti₄O_x [27] were stable only at temperatures above 1000 °C. The Cu₃Ti₃O_x phase can only be prepared under inert atmosphere [28].

Two ternary phases were determined in the R_2O_3 -CuO-TiO₂ systems, namely, R₂CuTiO₆ and R₂Cu₉Ti₁₂O₃₆. Tie-line relationships near the CuO corner are the same in all three diagrams, but significant differences were found in the R_2O_3 and TiO₂-rich regions, mainly due to different phases formed in the $TiO_2-R_2O_3$ and R₂O₃-CuO systems. While there is a compatibility line between R_2 CuTiO₆ and R_2 O₃ (R = Y and Yb), this tie-line does not exist in the R = Nd system; instead a tie-line between Nd_2TiO_5 and Nd_2CuO_4 was found. In the Ti-rich region, a single phase, Nd₂Ti₃O_{9-x}, has been reported by Richard et al. [29] using solution synthesis approach at a relatively low temperature; however, it could not be prepared under the current processing condition, as it contains Nd₂Ti₂O₇. Single-phase La₂Ti₃O_{9-x} was reported to be an A-site and oxygen deficient perovskite which exhibits both a cubic (when x is large), and an orthorhombic structure (when x is small) [24,30].

Comparing the three R_2O_3 -CuO-TiO₂ (R = Nd, Y, and Yb) phase diagrams with the La-analog (Fig. 4) [24], a trend of phase formation can be established. For example, the binary $R_2Ti_2O_7$

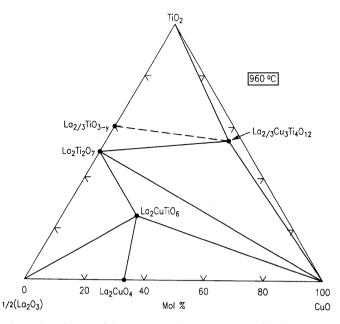
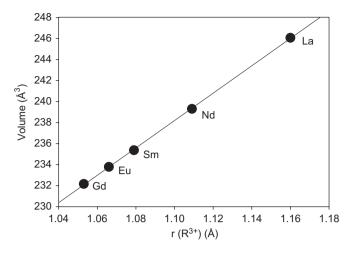


Fig. 4. Phase diagram of the La₂O₃-CuO-TiO₂ system prepared in air at 960 °C.


phase and the ternary $R_2Cu_9Ti_{12}O_{36}$ and R_2CuTiO_6 phases were found in all four systems. In the larger R = La and Nd-systems, two binary R-Ti-O phases were found (La₂Ti₂O₇ and La₂Ti₃O_{9-x} in the La-system vs. Nd₂Ti₂O₇ and R_2TiO_5 in the Nd-system), while only one binary oxide phase exists in the systems with smaller size of R^{3+} .

3.2. Structure of R₂Cu₉Ti₁₂O₃₆

This series of compounds has received considerable interest in recent years because of their high dielectric constants [31-34]. The details of the structure of $R_2Cu_9Ti_{12}O_{36}$ have been reported previously from this laboratory [35]. In brief, $R_2Cu_9Ti_{12}O_{36}$ belong to the perovskite-related $[AC_3](B_4)O_{12}$ family, are cubic with space group Im3 [36] and are isostructural to Bi_{2/3}Cu₃Ti₄O₁₂ [37]. The lattice parameters for the eleven $R_2Cu_9Ti_{12}O_{36}$ (R = Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu) phases span a range of 7.39987(3)-7.37757(2)Å, and the unit cell volume, V, from 405.202(4) to 401.550(3)Å³ [35]. The doubling of the unit cell as compared to the simple ABO3 type is the result of the ordering between the A and C cations in the [AC₃](B₄)O₁₂ family [38]. The structure of $R_2Cu_9Ti_{12}O_{36}$ (Fig. 5) can be considered as consisting of three types of polyhedra: R occupies the larger icosahedral A site of the ideal ABO₃ perovskite structure, while Ti occupies the distorted octahedral B site. The Jahn-Teller cation Cu occupies the C site. The 12 oxygens surrounding Cu are arranged as three mutually perpendicular rectangles of different size. The smallest and largest rectangles are nearly squares. One-third of the *R* site is vacant; therefore, the chemical formula can be written as $[R_{2/3}X_{1/3}Cu_3](Ti_4)O_{12}$, where X = vacancy.

3.3. Structure of R₂CuTiO₆

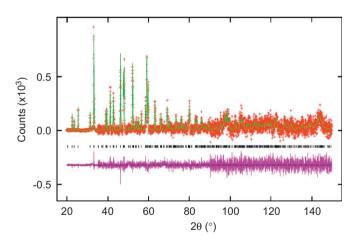

Table 2 gives the refinement residuals using the Reitveld refinement technique. Fig. 6 shows the observed (crosses) and calculated (solid line) X-ray intensities pattern for Eu_2TiCuO_6 at 295 K. Differences in intensity between the observed and calculated patterns are shown at the bottom of the figure. Vertical

Fig. 5. Cell volume of R_2 TiCuO₆ showing a monotonic decreasing trend as a function of the Shannon ionic radius of $r(R^{3+})$ [41–42].

Table 2 R_2 TiCuO₆ refinement residuals.

R	Nd	Sm	Eu	Gd
wRp	0.0729	0.0356	0.0321	0.0179
Rp	0.0567	0.0276	0.0248	0.0140
$\frac{Rp}{\chi^2}$	1.395	1.405	1.381	1.349
R(F)	0.0605	0.0618	0.0616	0.0863
$R(F^2)$	0.0999	0.1007	0.0947	0.1188
$\Delta F(e/Å^3)$	2.66	2.01	2.37	3.67
	-2.62	-2.26	-2.81	-3.26
#Variables	26	28	27	25
#Observations	17813	18635	17813	17828

Fig. 6. Observed (crosses) and calculated (solid line) X-ray intensities pattern for $Ba(Nd_{0.8}Y_{1.2})CuO_5$ at 295 K. Differences in intensity between the observed and calculated patterns are shown at the bottom of the figure. Vertical lines indicate the Bragg positions.

Table 3 Lattice parameters for R_2 TiCuO₆ (R =Nd, Sm, Eu, and Gd).

R	$r(R^{3+})({\rm \AA})$	a (Å)	b (Å)	<i>c</i> (Å)	V (Å ³)
La [24]	1.160	5.616 (5)	7.842 (7)	5.587 (6)	246.06
Nd	1.109	5.7247 (3)	7.6350 (3)	5.4750 (3)	239.30 (2)
Sm	1.079	5.74812 (11)	7.56025 (14)	5.41621 (10)	235.373 (10)
Eu	1.066	5.75444 (10)	7.54182 (14)	5.38684 (10)	233.783 (10)
Gd	1.053	5.75742 (9)	7.52298 (12)	5.36018 (9)	232.165 (8)

Space group: *Pnma*; $r(R^{3+})$ is the Shannon ionic radius taken from Refs. [41,42].

Table 4

Atomic coordinates of R_2 TiCuO₆ (R =Nd, Sm, Eu, and Gd).

R	x	Y	Z	Occ	$U_{\rm iso}({\rm \AA}^2)$	М
(1) Nd ₂ TiCu						
Nd ₁	0.5578 (2)	0.25	0.0104 (5)	1.0	0.0130 (5)	4
Ti ₂ /Cu ₃ O ₄	0.0 0.246 (3)	0.0 0.031 (2)	0.0 0.170 (2)	0.5 1.0	0.0017 (9) 0.022 (4)	4 8
04	0.240 (3)	0.031 (2)	0.899 (3)		0.022(4) 0.022(4)	4
05	0.371 (2)	0.25	0.055 (5)	1.0	0.022 (1)	•
(2) Sm2TiC	u06					
Sm1	0.5654 (2)	0.25	0.0166 (3)	1.0	0.0168 (4)	4
Ti ₂ /Cu ₃		0.0	0.0	0.5	0.0074 (7)	4
04	0.278 (2)	0.0451 (13)		1.0	0.058 (3)	8
0 ₅	0.976 (2)	0.25	0.884 (2)	1.0	0.058 (3)	4
(3) Eu ₂ TiCu	10 ₆					
Eu1	0.5695 (2)	0.25	0.0166 (3)	1.0	0.0138 (4)	4
Ti ₂ /Cu ₃		0.0	0.0	0.5	0.0089 (7)	4
04	0.2865 (15)				0.028 (2)	8
0 ₅	0.974 (2)	0.25	0.877 (2)	1.0	0.028 (2)	4
(4) Gd ₂ TiCı	10c					
Gd ₁	0.57275 (13)	0.25	0.0175 (3)	1.0	0.0187 (4)	4
Ti ₂ /Cu ₃	• •	0.0	0.0	0.5	0.0081 (6)	4
04	0.2811 (12)	0.0534 (8)	0.1893 (12)	1.0	0.038 (2)	8
O ₅	-0.0292 (15)	0.25	-0.1220 (14)	1.0	0.038 (2)	4

Occ stands for site occupancy; U_{iso} stands for isotropic displacement factor, and M is multiplicity

lines indicate the Bragg positions. Table 3–5 give the lattice parameters, atomic coordinates with isotropic displacement factors, and bond distances, respectively.

Anderson et al. [39] gave a detailed review of the B-cation arrangements in the A'A"B'B'O₆ double perovskites, including the R_2 TiCuO₆ series. In summary, four factors that determine the B-cation arrangement in A'A"B'B'O₆ perovskites are differences in charge, ionic radius, cation coordination geometry, and the A-cation/B-cation size ratio. The B-cations may order in a random, rock salt, or layered fashion. Among the five common systems observed in these materials, the randomly distributed B-cation sublattices with BO₆ octahedra tilting usually has an orthorhombic *Pbnm* ($\sqrt{2a_p} \times \sqrt{2a_p} \times 2a_p$) structure. An orthorhombic cell is observed when the A–O bond length is less than $\sqrt{2}$ times the B–O bond length, or the Goldschmidt tolerance factor, t < 1 [40]. Depending on the size of R^{3+} [41,42], two structure types of R_2 TiCuO₆ were reported, namely orthorhombic *Pnma* (R = La, Nd, Sm, Eu, and Gd), and hexagonal $P6_3cm$ (R = Dy, Ho, Er, Tm, Yb, and Lu) [24,43]. The structure of the hexagonal members, with R = Y, Tb-Lu, has been reported [43].

 R_2 TiCuO₆ (R = La, Nd, Sm, Eu, and Gd) are isostructural to GdFeO₃ [44]. R resides in an eight-membered cage, while Ti and Cu are disordered inside octahedral cages. Fig. 7 and Table 3 show the monotonic decrease of the lattice parameters as a function of the lanthanide contraction. It is interesting to see that as the size of R^{3+} decreases, the cell dimensions b and c decrease, as expected; however, the corresponding value for a increases. As seen in Fig. 8 of the structure, the BO₆ octahedra rotate about [011]_{cubic} and the [100]_{cubic} ($a^-b^-b^-$ in Glazer's rotation [45]). These octahedra tilt to optimize eight of the originally equal 12 A–O bond distances [39]. Apparently, this optimization gives rise to the different trend of the cell parameters a, b, and c.

Table 5 gives the lengths of the relevant bonds and the bond valence sum values (BVS) [46,47] for *R*, Cu and Ti. The bond

Table 5

Bond distances (Å) in R_2 TiCuO₆ (R = Nd, Sm, Eu, and Gd).

Atoms	Bond distance	BVS	Atoms	Bond distance	BVS	BVS			
					Ti	Cu	Cu/Ti		
(1) Nd ₂ TiCuO ₆ Nd ₁ -O ₄ Nd ₁ -O ₅	2.598 (14) \times 2 2.615 (15) \times 2 2.65 (2) \times 2 2.441 (12) \times 1 2.30 (2) \times 1	2.57	Ti ₂ /Cu ₃ -O ₄	$\begin{array}{c} 1.702 \ (12) \times 2 \\ 2.334 \ (11) \times 2 \\ 1.994 \ (5) \times 2 \end{array}$	4.44	3.07	3.76		
(2) Sm ₂ TiCuO ₆ Sm ₁ -O ₄ Sm ₁ -O ₅	$\begin{array}{c} 2.477 \ (10) \times 2 \\ 2.680 \ (10) \times 2 \\ 2.495 \ (10) \times 2 \\ 2.466 \ (10) \times 1 \\ 2.230 \ (10) \times 1 \end{array}$	2.81	Ti ₂ /Cu ₃ -O ₄	1.961 (12) × 2 2.092 (11) × 2 1.997 (3) × 2	3.52	2.44	2.98		
(3) Eu ₂ TiCuO ₆ Eu ₁ -O ₄ Eu ₁ -O ₅	$\begin{array}{c} 2.429 \ (8) \times 2 \\ 2.689 \ (8) \times 2 \\ 2.471 \ (8) \times 2 \\ 2.445 \ (11) \times 1 \\ 2.192 \ (10) \times 1 \end{array}$	2.94	Ti ₂ /Cu ₃ -O ₄	2.012 (9) \times 2 2.059 (9) \times 2 2.004 (3) \times 2	3.41	2.36	2.88		
(4) Gd ₂ TiCuO ₆ Gd ₁ -O ₄ Gd ₁ -O ₅	2.420 (6) \times 2 2.673 (6) \times 2 2.469 (7) \times 2 2.410 (9) \times 1 2.200 (8) \times 1	2.91	Ti ₂ /Cu ₃ -O ₄	1.952 (7)×2 2.127 (7)×2 1.998 (2)×2	3.46	2.40	2.93		

Since the Cu/Ti sites are mixed (in 50:50 ratio), for comparison purpose, three bond valence sum (BVS) values [46,47] were computed by assuming that the sites are occupied by Cu, Ti, and mixed Cu/Ti.

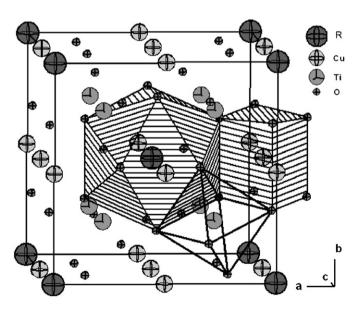
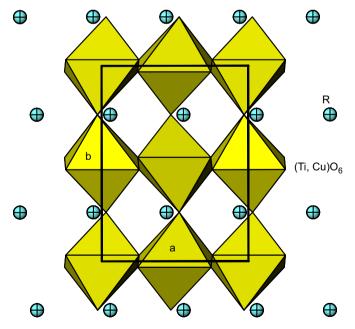



Fig. 7. Crystal structure of *R*₂Cu₉Ti₁₂O₃₆ [35,36].

Fig. 8. Crystal structure of R_2 TiCuO₆, where R =Nd, Sm, Eu, and Gd, featuring the tilting of the Ti/CuO₆ octahedra.

valence values used for Cu–O and Ti–O are 1.679 and 1.815, and those for Nd–O, Sm–O, Eu–O, and Gd–O are 2.117, 2.088, 2.076, and 2.065, respectively [46,47]. For the Cu/Ti sites, we report BVS calculations for assuming full site occupancy for Ti, for Cu, and for 50:50 mole ratios of Ti/Cu. One can in general consider the

BVS as an indication for the strain state of the cations in a cage. A value that is larger than the ideal valence is considered as compressive strain, or the cage in which the cation resides is too small. On the other hand, a small value suggests tensile strain, or the cage is too large. At a glance, in the present case, Nd_2TiCuO_6 experiences most strain: with the smallest BVS (2.57) for 'Nd' in the eight-membered Nd–O cage and the largest value for Ti/Cu (3.76) in the octahedral cage. As the ionic size of the lanthanide cation decreases, both compressive and tensile strain relax, and the BVS values for Eu and Gd approach that of the ideal valence of '3', and that of Ti/Cu approaches the ideal average value of '3' as well (a mean value between a Ti⁴⁺ cation and a Cu²⁺ cation of the mixed site).

3.4. Powder diffraction patterns for R_2CuTiO_6

Powder diffraction patterns for $R_2Cu_9Ti_{12}O_{36}$ have been submitted and published in the PDF and will not be reported in this paper. Preparation of X-ray powder reference patterns for R_2TiCuO_6 (R = Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y) have been completed and have been submitted to the International Centre for Diffraction Data (ICDD) to be included in the PDF. Tables 6 and 7 give two examples of experimental patterns of R_2 TiCuO₆: R =Sm (*Pnma*) and R = Y phases (*P*6₃cm). In these tables, the symbols *M* and + refer to peaks containing contributions from two and more than two reflections, respectively. The symbol * indicates the particular peak that has the strongest intensity of the entire pattern and is designated a value of '999'. The intensity values reported are integrated intensities rather than peak heights.

3.5. Summary

The phase equilibrium study of the R_2O_3 -TiO₂-CuO (R = Nd, Y, and Yb) systems gives a trend of phase formation as a function of the ionic radius of R^{3+} . While the diagrams for R = Y and Yb are similar, they are different from that of the R = La and Nd systems, particularly in the CuO-poor region. Crystal chemistry and X-ray patterns of selected R_2 TiCuO₆ phases have been studied and prepared, respectively.

Table 6

X-ray reference pattern for Sm₂TiCuO₆, Pnma (no. 62), a = 5.74812(11)Å, b = 7.56025(14)Å, c = 5.41621(10)Å, V = 235.373(10)Å³.

d (Å)	Ι	h	k	1	d (Å)	Ι	h	k	L	d (Å)	Ι	h	k	l
4.4029	6	0	1	1	3.9420	130	1	0	1	3.7801	84	0	2	0
3.4954	167	1	1	1	2.8741	177	2	0	0	2.7284	999*	1	2	1
2.7081	235	0	0	2	2.6865	127	2	1	0	2.5388	5	2	0	1
2.3305	35	1	1	2	2.2879	50	2	2	0	2.2015	94	0	2	2
2.1233	67	1	3	1	2.1076	5	2	2	1	1.9710	166	2	0	2
1.9072	119	2	1	2	1.8948	74	2	3	0	1.8901	148	0	4	0
1.7569	171	3	1	1M	1.7569	171	1	3	2M	1.7477	8	2	2	2
1.7224	17	1	0	3	1.7043	35	1	4	1	1.6794	28	1	1	3
1.6298	66	3	2	1	1.5792	89	2	4	0	1.5674	208	1	2	3
1.5525	49	2	3	2	1.5499	100	0	4	2	1.4985	13	2	1	3
1.4681	98	3	3	1M	1.4681	98	0	3	3 <i>M</i>	1.4370	7	4	0	0
1.4220	8	1	3	3	1.4118	56	1	5	1M	1.4118	56	4	1	0M
1.3890	6	4	0	1	1.3642	96	2	4	2	1.3541	27	0	0	4
1.3432	7	4	2	0	1.3382	14	2	5	0	1.2984	10	1	1	4
1.2946	43	3	1	3	1.2747	7	0	2	4	1.2731	19	1	4	3
1.2600	7	0	6	0	1.2519	45	4	1	2	1.2483	20	4	3	0
1.2411	21	3	2	3	1.2249	22	2	0	4	1.2092	22	2	1	4
1.2034	7	4	2	2	1.2001	97	1	6	1M	1.2001	97	2	5	2 <i>M</i>
1.1679	6	1	3	4	1.1651	34	3	3	3	1.1594	43	3	5	1
1.1424	6	0	6	2	1.1363	8	1	5	3	1.1337	41	4	3	2
1.1246	15	5	0	1	1.1123	30	5	1	1	1.1017	17	2	3	4
1.1007	31	0	4	4	1.0777	6	4	2	3	1.0613	5	3	2	4
1.0417	22	4	5	0 <i>M</i>	1.0417	22	1	7	1 <i>M</i>	1.0334	13	3	6	1
1.0279	25	2	4	4	1.0270	21	5	3	1	1.0247	40	1	2	5
1.0170	45	1	6	3	1.0110	7	2	7	0	0.9918	19	3	5	3
0.9772	22	4	1	4	0.9722	23	4	5	2	0.9697	9	5	0	3
0.9664	19	5	4	1	0.9618	16	5	1	3	0.9536	6	4	2	4
0.9518	13	2	5	4	0.9504	5	6	1	0	0.9472	16	2	7	2
0.9450	15 6	0	8	0 5	0.9357 0.9270	17	3 3	1	5	0.9287	23	6	2	0
0.9275 0.9178		1	4		0.9270	29		7	1	0.9190	8	1	8	1
0.9178	24 18	4 5	3 3	4 3	0.9149	14 32	3 0	2 0	5 6M	0.9095 0.9023	16 32	3 5	6 5	3 1 <i>M</i>
0.9050	18	2 2	8	3 0	0.9023	32 11	6	0		0.9023	5	5 6	э 3	0
0.8978	6	2 4	8 6	2	0.8968	28	0	8	2 2	0.8955	5 6	6 1	3 1	6
0.8945	15	4	3	5	0.8925	28 34	6	2	2	0.8634	11	4	7	0
0.8628	15	5	4	3	0.8784	54 11	2	2	6	0.8557	11	4	1	6
0.8628	26	2	4 8	2	0.8612	7	6	3	2	0.8557	6	2	3	6
0.8521	26	2	8 7	2	0.8502	8	6 1	3	2	0.8407	29	4	5	6 4
0.8344 0.8226	28 35	3 4	7	3	0.8285	8 5	1	8 9	3	0.8256	29 5	4	5 0	4 6
0.8226	35 25	4 5	5	2	0.8216	5 18	2	3	1 6M	0.8166	5 18	6	4	6 2M
0.8163	25	5 0	5 4	6	0.8149	60	2	6	5	0.8149	35	7	4	2 <i>IVI</i> 1
0.8140	28 16	2	4	4	0.8093	5	6	5	0	0.8063	8	2	9	0
0.8001	30	2	5	4 5	0.7982	10	3	2	6	0.0005	0	2	9	0

The symbol 'd' refers to *d*-spacing values; 'l' refers to *l* integrated intensity value (scaled according to the maximum value of 999; the symbol * indicates the strongest peak); the *h* k *l* values are the Miller indexes; *M* and + refer to peaks containing contributions from two and more than two reflections, respectively.

Table 7
X-ray reference pattern for Y ₂ TiCuO ₆ , P6 ₃ cm (no. 62), $a = 6.18215(4)$ Å, $c = 11.49047(12)$ Å, $V = 380.318(6)$ Å ³ .

d (Å)	Ι	h	k	1	d (Å)	Ι	h	k	1	d (Å)	Ι	h	k	l
5.74524	100	0	0	2	5.35390	10	1	0	0	3.91683	20	1	0	2
3.09107	302	1	1	0	2.98495	609	1	1	1	2.87262	373		0	4
2.72210	999*	1	1	2	2.53128	11	1	0	4	2.42648	16	2	0	2
2.40545	23	1	1	3	2.10424	291	1	1	4	1.95841	11	2	0	4
1.90865	8	2	1	2	1.84425	108	1	1	5	1.80319	37	1	0	6
1.78463	496	3	0	0	1.70430	43	3	0	2	1.65433	18	2	1	4
1.62796	218	1	1	6	1.55755	23	2	0	6	1.54554	42	2	2	0
1.53174	49	2	2	1	1.51591	267	3	0	4	1.49248	152	2	2	2
1.44976	43	1	1	7	1.43631	23	0	0	8	1.43325	7	2	2	3
1.39094	22	2	1	6	1.38726	9	1	0	8	1.36105	56	2	2	4
1.30256	11	1	1	8	1.28248	17	2	2	5	1.20272	63	2	2	6
1.17348	14	3	1	6	1.17126	9	2	1	8	1.16832	31	4	1	0
1.16232	23	4	1	1	1.14488	129	4	1	2	1.12526	12	2	2	7
1.12347	9	1	0	10	1.11893	55	3	0	8	1.11749	6	4	1	3
1.08223	53	4	1	4	1.07704	12	1	1	10	1.05589	7	2	0	10
1.05212	8	2	2	8	1.04146	17	4	1	5	1.03389	10	3	2	6
1.03238	9	3	1	8	1.03036	49	3	3	0	1.01418	11	3	3	2
0.99920	19	2	1	10	0.99737	84	4	1	6	0.98961	9	1	1	11
0.96986	49	3	3	4	0.95184	12	4	1	7	0.92212	8	2	2	10
0.90874	12	3	1	10	0.90634	14	4	1	8	0.89461	7	4	2	6
0.89232	37	6	0	0	0.88174	6	6	0	2	0.86553	10	2	1	12
0.85934	6	5	1	6	0.85731	21	5	2	0	0.85493	9	5	2	1
0.85215	52	6	0	4	0.84982	7	1	1	13	0.84792	96	5	2	2
0.84376	28	3	0	12	0.83911	11	3	2	10	0.83722	33	3	3	8
0.82151	55	5	2	4	0.81923	29	4	1	10	0.80473	14	3	1	12
0.80324	14	5	2	5	0.79975	11	4	3	6	0.79905	11	5	1	8

The symbol 'd' refers to d-spacing values, 'l' refers to l integrated intensity value (scaled according to the maximum value of 999; the symbol * Indicates the strongest peak); the h k l values are the Miller indexes; M and + refer to peaks containing contributions from two and more than two reflections, respectively.

Acknowledgments

The authors acknowledge the partial financial support from the US Department of Energy and also from International Centre for diffraction Data. Mr. N. Swanson is thanked for his graphical assistance.

References

- [1] A.P. Malozemoff, D.T. Verebelyi, S. Fleshler, D. Aized, D. Yu, Physica C 385 (2003) 424 - 430
- [2] M.W. Rupich, W. Zhang, X. Li, T. Kodenkandath, D.T. Verebelyi, U. Schoop, C. Thieme, M. Teplitsky, J. Lynch, N. Nguyen, E. Siegal, J. Scudiere, V. Maroni, K. Venkataraman, D. Miller, T.G. Holesinger, Physica C 412-414 (2004) 877-884.
- [3] A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikka, Appl. Phys. Lett. 69 (1996) 1795-1797.
- A. Goyal, U. Schoop, P. Paranthaman, MRS Bull. 29 (2004) 552-563.
- [5] P.N. Arendt, S.R. Foltyn, L. Civale, R.F. DePaula, P.C. Dowden, J.R. Groves, T.G. Holesinger, Q.X. Jia, S. Kreiskott, L. Stan, I. Usov, H. Wang, J.Y. Coulter, Physica C 412–414 (2004) 795–800.
- [6] S.R. Foltyn, E.J. Peterson, J.Y. Coulter, P.N. Arendt, Q.X. Jia, P.C. Dowden, M.P. Maley, X.D. Wu, D.E. Peterson, J. Mater. Res. 12 (1997) 2941–2946.
- [7] Y. Yamada, A. Ibi, H. Fukushima, R. Kuriki, S. Miyata, K. Takahashi, H. Kobayashi, S. Ishida, M. Konishe, T. Kato, T. Hirayama, Y. Shiohara, Physica C 445-448 (2006) 504-508
- [8] R. Feenstra, T.B. Lindemer, J.D. Budai, M.D. Galloway, J. Appl. Phys. 69 (1991) 6569
- [9] V. Selvamanickam, H.G. Lee, Y. Li, X. Xiong, Y. Qiao, J. reeves, Y. Xie, A. Knoll, K. Lenseth, Physica C 392-396 (2003) 859-862.
- [10] V. Selvamanickam, Y. Chen, X. Xiong, Y.Y. Xie, J.L. Reeves, X. Zhang, Y. Qiao, K.P. Lenseth, R.M. Schmidt, A. Rar, D.W. Hazelton, K. Tekletsadik, IEEE Trans. Appl. Superconductivity 17 (2) (2007) 3231-3234.
- [11] P.M. Mankiewich, J.H. Scofield, W.J. Skocpol, R.E. Howard, A.H. Dayem, E. Good, Appl. Phys. Lett. 51 (21) (1987) 1753.
- [12] S.-W. Chan, B.G. Bagley, L.H. Greene, M. Giroud, W.L. Feldmann, K.R. Jenkin II, B.J. Wilkins, Appl. Phys. Lett. 53 (15) (1988) 1443.
- [13] P.C. McIntye, M.J. Cima, J. Mater. Res. 9 (9) (1994) 2219.
- [14] P.C. McIntyre, M.J. Cima, A. Roshko, J. Appl. Phys. 77 (10) (1995) 5263.
- [15] W. Wong-Ng, L.P. Cook, P. Schenck, I. Levin, Z. Yang, Q. Huang, J. Frank, in: Proceedings of the PACRIM meeting, sponsored by ACerS, Maui, Hawaii, September 2005, Ceramic Trans. 191 (2006) 83–98
- [16] L.P. Cook, W. Wong-Ng, P. Schenck, Z. Yang, I. Levin, J. Frank, J. Electron. Mater. 36 (10) (2007) 1293-1298.

- [17] W. Wong-Ng, I. Levin, M. Otani, M.D. Vaudin, L.P. Cook, J. Cline, R. Feenstra, T. Holesinger, Appl. Phys. Lett. 90 (2007) 102508.
- [18] W. Wong-Ng, I. Levin, L.P. Cook, R. Feenstra, Appl. Phys. Lett 88 (2006) 102507. [19] W. Wong-Ng, I. Levin, R. Feenstra, L.P. Cook, M. Vaudin, Supercond. Sci. Technol. 17 (2004) S548.
- [20] W. Wong-Ng, I. Levin, M. Vaudin, R. Feenstra, L.P. Cook, J.P. Cline, Adv. X-ray Diffr. 46 (2002) 257-263.
- [21] PDF, Powder Diffraction File, Produced by ICDD, Newtown Square, 12 Campus Blvd., Newtown Squares PA 19073-3273, USA.
- [22] H.M. Rietveld, J. Appl. Cryst. 2 (1969) 65.
- [23] A.C. Larson, R.B. von Dreele, (1992). GSAS-General Structure Analysis System, US Government Contract (W-7405-ENG-36) by the Los Alamos National laboratory, which is operated by the University of California for the US Department of Energy.
- [24] M.T. Anderson, V.F. Balbarin, D.A. Groenke, G.A. Bain, K.R. Poeppelmeier, J. Solid State Chem. 103 (1993) 216-227.
- [25] A.A. Slobodyanyuk, Yu.D. Tret'yakov, A.F. Bessonov, Russ. J. Inorg. Chem. 17 (6) (1972) 922
- [26] D. Hennings, J. Solid State Chem. 31 (1980) 275-279.
- [27] M.H. Mueller, H.W. Knott, Trans. Metall. Soc. AIME 227 (1963) 674.
- [28] G. Kelkar, A. Carim, J. Am. Ceram. Soc. 76 (1993) 1815.
- [29] M. Richard, L. Brohan, M. Tournoux, J. Solid State Chem. 112 (1994) 345-354.
- [30] M. Abe, K. Uchino, Mater. Res. Bull. 9 (1974) 147.
- [31] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115 (2000) 217-220.
- [32] M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151 (2000) 323-325.
- [33] C.C. Holmes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293 (2001) 27.
- [34] X. Shan, X. Yang, K. Zhang, Z. Cheng, Mater, Res. Soc. Symp. Proc. 949 (2007) C05.
- [35] W. Wong-Ng, J.A. Kaduk, J. Suh, Powder Diffr. 20 (3) (2005) 193–197.
 [36] J. Chenavas, J.C. Joubert, M. Marezio, B. Bochu, J. Solid State Chem. 14 (1975) 25 - 32.
- [37] I. Bryntse, P.-E. Werner, Mater. Res. Bull. 25 (1990) 477-483.
- [38] M.N. Deschizeaux, J.C. Joubert, A. Vegas, A. Collomb, J. Chenavas, M. Marezio, J. Solid State Chem. 19 (1976) 45–51.
- [39] M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, Prog. Solid State Chem. 22 (1993) 197-233.
- [40] V.M. Goldschmidt, Str. Nor. Vidensk-Akad. Oslo 1 (1926) 1.
- [41] R.D. Shannon, C.T. Prewitt, Acta Crystallogr. 25 (1969) 925-946.
- [42] R.D. Shannon, Acta Crystallogr. A 32 (1976) 751–767.
- [43] N. Floros, J.T. Rijssenbeek, A.B. Martinson, K.R. Poeppelmeier, Solid State Sci. 4 (2002) 1495-1498
- [44] P. Coppens, M. Eilschuetz, Acta Crystallogr. 19 (1965) 524.
- [45] A.M. Glazer, Acta Crystallogr. B 28 (1972) 3384-3392.
- [46] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244-247.
- [47] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.